
Bimetallic catalysed C–C Coupling and Other Reactions using Transition Metals

Reporter: Xinjin Li

Sep 7th, 2015

Content

1	Introduction
2	Group Exchange between Organometallic Complexes
3	Bimetallic Catalysis in C–C bond Forming Reaction
4	Summary and Outlook

1. Introduction

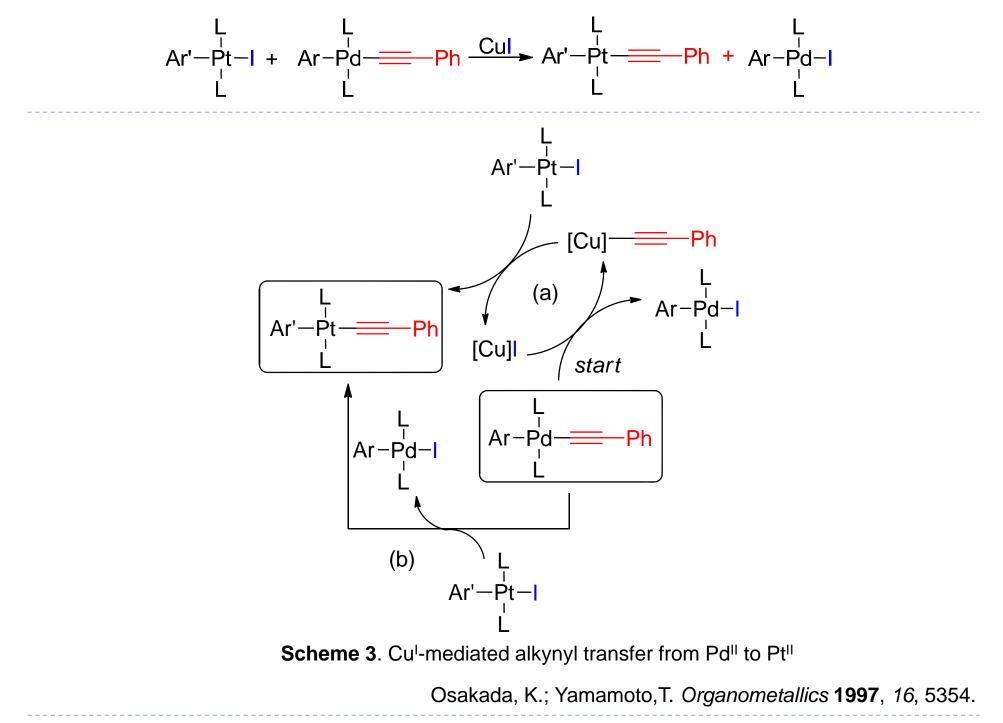
Bimetallic catalysis refers to homogeneous processes in which two transition metals cooperate in a synthetic process (often a C–C coupling) and their actions are connected by a transmetalation step.

$$R^1-X + H \longrightarrow R^2 \xrightarrow{Pd/Cu} R^1 \longrightarrow R^2$$

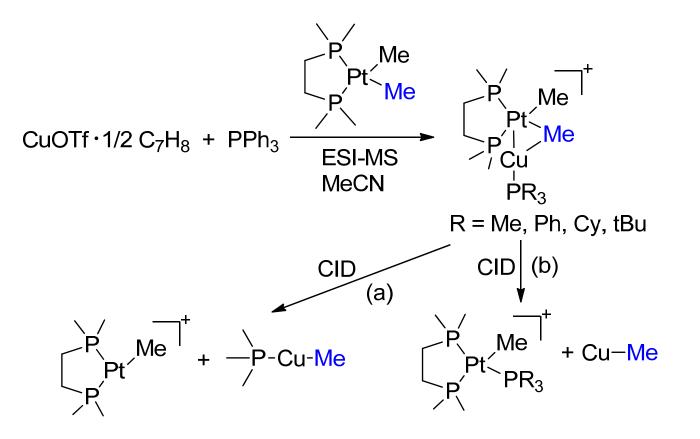
Scheme 1. Sonogashira coupling

Pérez-Temprano, M. H.; Casares, J. A; Espinet, P. Chem. Eur. J. 2012, 18, 1864.

2. Group Exchange between Organometallic Complexes


Group transfers are essential in most organic reactions assisted by transition metal complexes, and can be classified according to the type of ligand exchange and bond involved: halogen for organic group and carbon for carbon exchange.

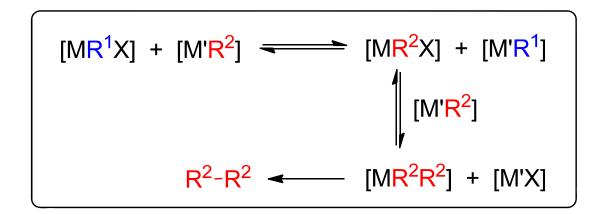
Halogen for organic group exchange: In a catalytic process, transmetalation of an organic group to a halogen–transitionmetal complex is eventually followed by a reductive elimination, giving a R1–R2 cross-coupling product. However, when the reductive elimination fails and the transmetalated complex is stable, the exchange is a new method for preparing organo-transition-metal complexes.



Scheme 2. Alkynyl transfer from Cu to other metals

Osakada, K.; Yamamoto, T. Coord. Chem. Rev. 2000, 198, 379.

Pseudohalide for organic group exchange

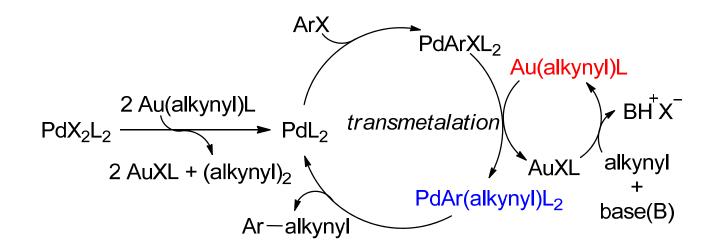


Scheme 4. Transmetalation from Pt^{II} to Cu^I

Moret, M.-E.; Serra, D.; Bach, A.; Chen, P. Angew. Chem. Int. Ed. 2010, 49, 2873.

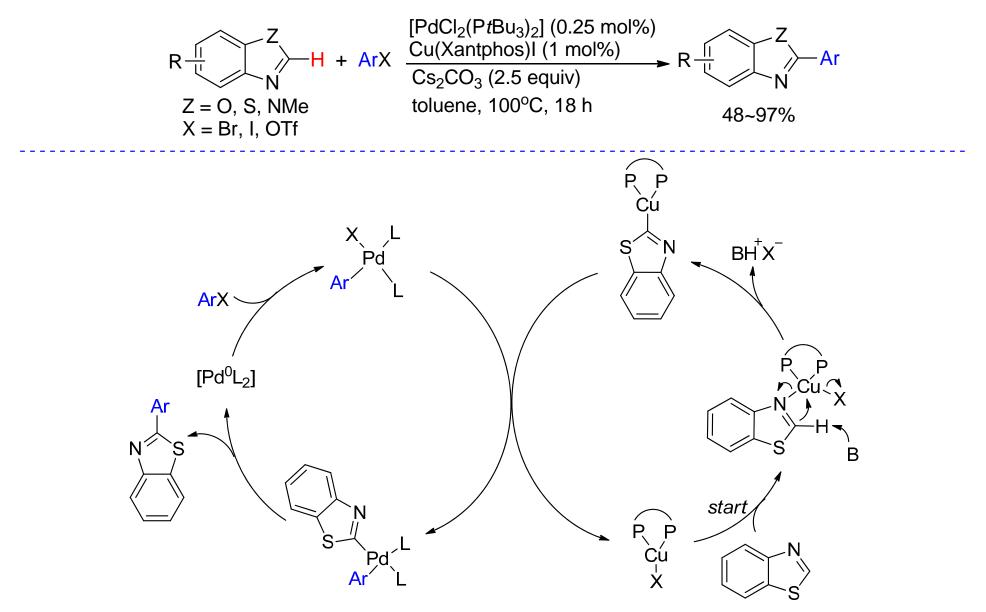
2. Group Exchange between Organometallic Complexes

Carbon for carbon exchange: Reports on carbon for carbon exchange using non-maingroup arylating agents are unusual. In fact, unobserved carbon for carbon exchanges might be more common than expected.



Scheme 5. A plausible mechanism of formation of undesired homocoupling products

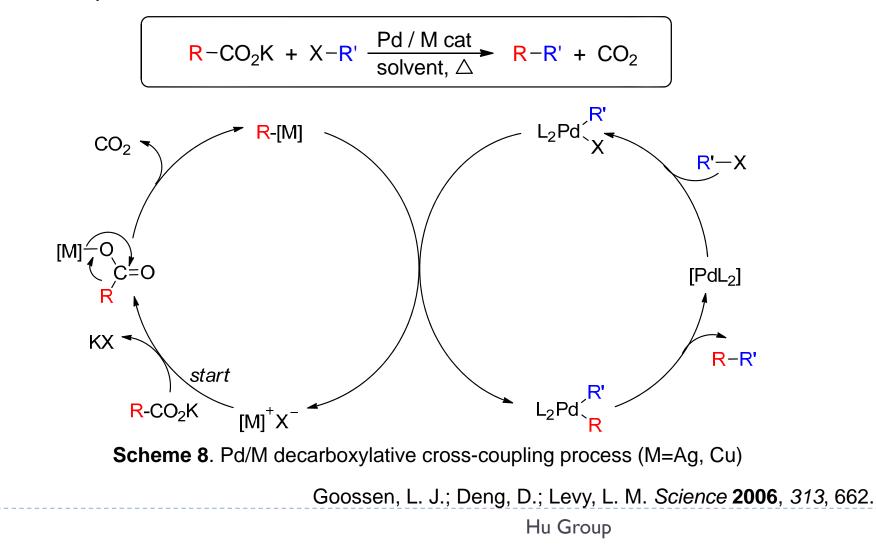
Casares, J. A.; Espinet, P.; Fuentes, B.; Salas, G. J. Am. Chem. Soc. 2007, 129, 3508.


3. Bimetallic Catalysis in C–C bond Forming Reaction

Bimetallic catalysis involving C–H activation: The role of one of the metals is to activate a C–H bond and then to transfer this organic group to a second metal and that completes the catalytic cycle.

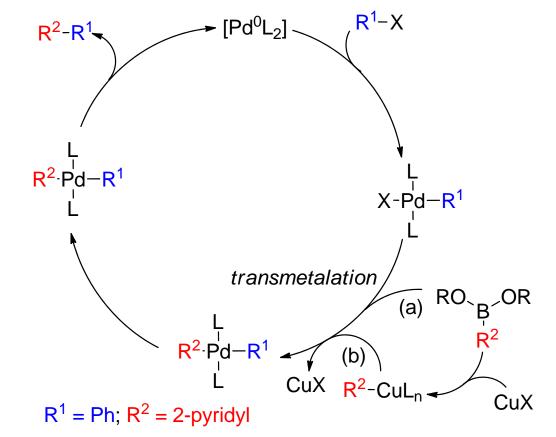
Scheme 6. Mechanistic proposal correcting the so-called "Pd-free Sonogashira reaction"

Lauterbach, T.; Espinet, P. and et al. Org. Lett. 2010, 12, 3006.



Scheme 7. Pd/Cu double-co-catalytic mechanism in the direct arylation of heteroarenes

Huang, J.; Chan, J. and et al. J. Am. Chem. Soc. 2010, 132, 3674.


Decarboxylative cross-coupling processes

A copper(I) or a silver(I) catalyst mediates the extrusion of CO_2 from carboxylic acid salts, while a palladium complex catalyzes the coupling of the resulting carbon nucleophiles with carbon electrophiles.

"Copper effect" in Suzuki coupling reaction

With the exception of Sonogashira and Stille reactions, copper effects in bimetallic catalysis have been reported less frequently.

Scheme 9. Proposed organocopper-mediated transmetalation in a Suzuki catalytic cycle

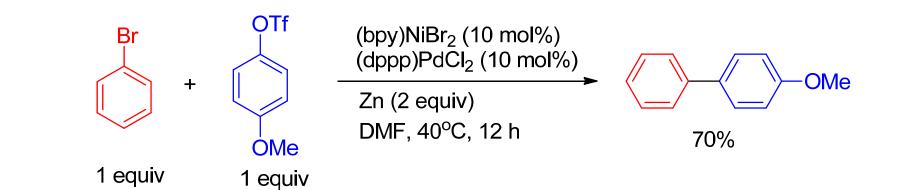
Deng, J. Z.; Paone, D. V and et al. Org. Lett. 2009, 11, 345.

Hu Group

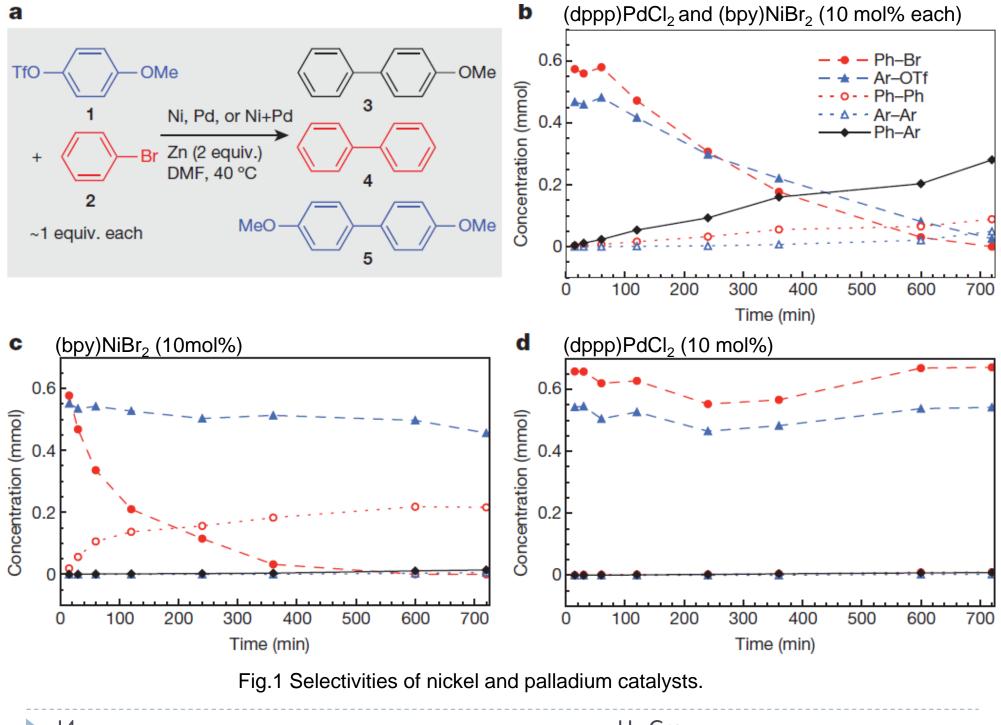
Bimetallic catalysed cross-Ullmann reaction

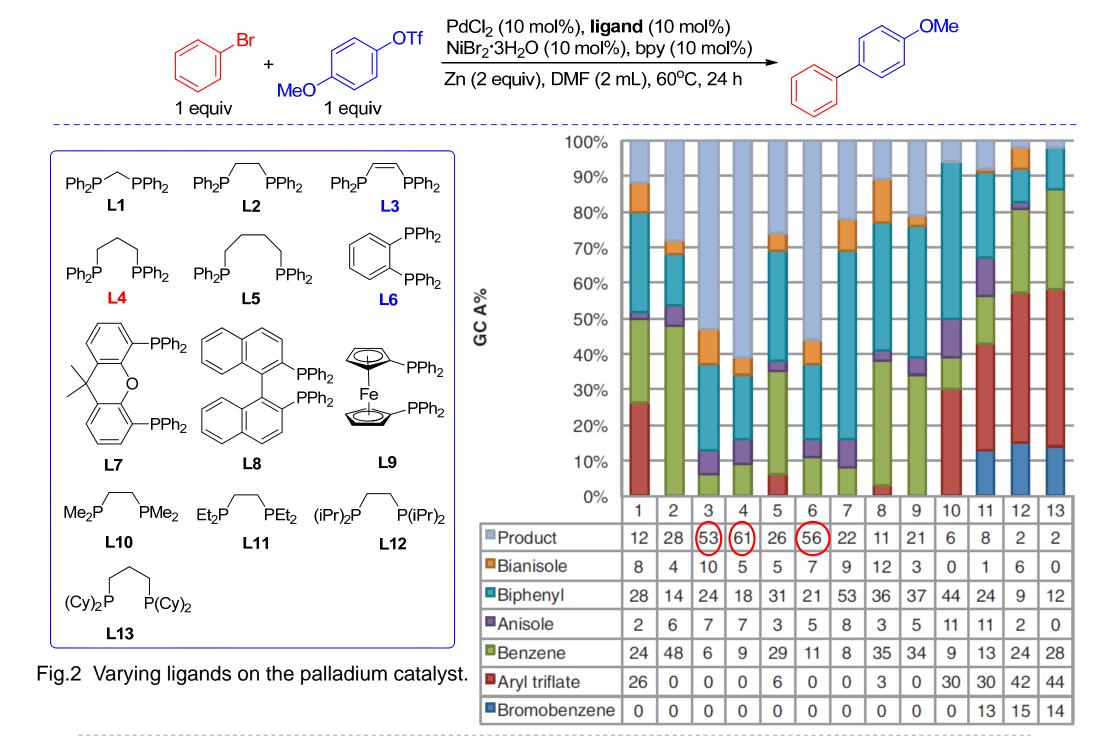
Compared to all the above examples involving only one metal catalyst undergoing oxidative addition, the bimetallic catalysed cross-Ullmann reaction (the cross-coupling of two different aryl electrophiles) is highly challenging.

$$R^{1}X_{1} + R^{2}X_{2} \xrightarrow{[M1], [M2]} R^{1}-R^{2}$$

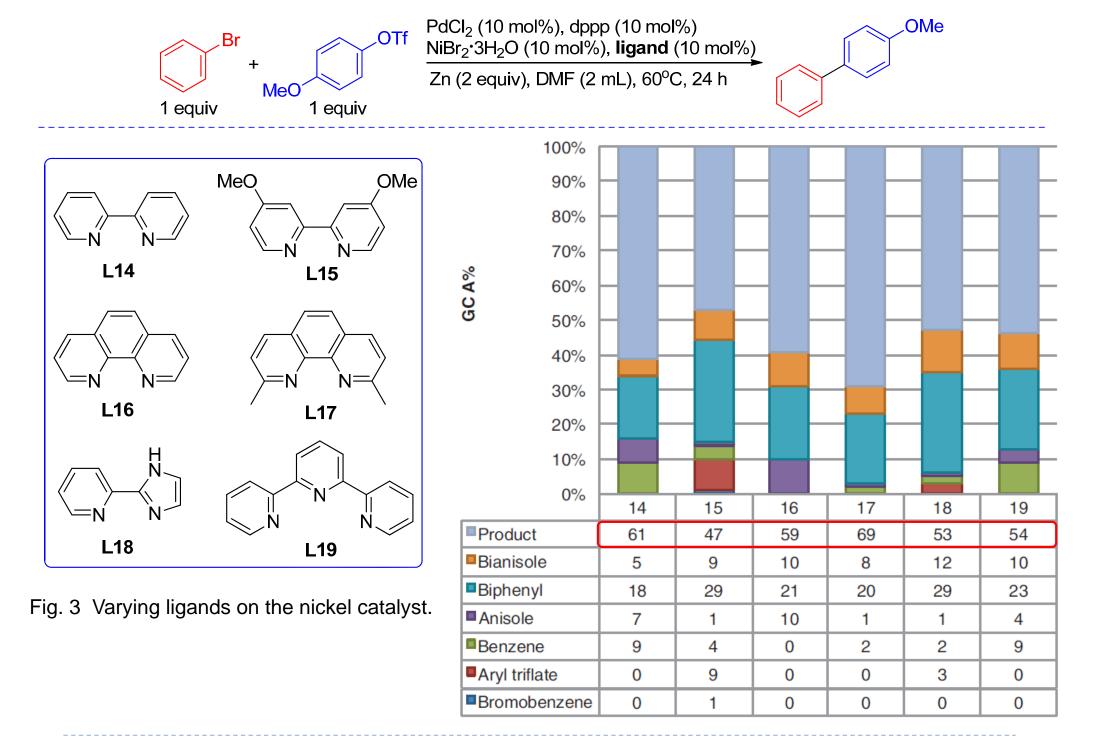

Each of the two catalysts activated only one of the two substrates.
Selective transmetallation could be achieved.
The catalysts were redox compatible.

Ackerman, L. K. G.; Lovell, M. M.; Weix, D. J. Nature, 2015, 524, 454.


Multimetallic catalysed cross-coupling of aryl bromides with aryl triflates

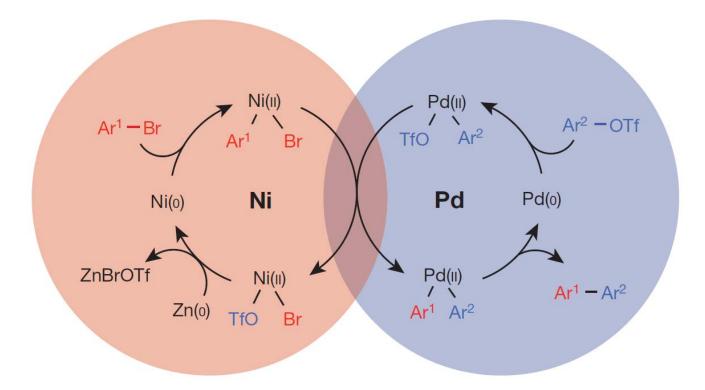

Relative reactivity of catalysts

(bpy)Ni
$$\swarrow$$
 I > \bigcirc Br > \bigcirc OTf > \bigcirc Cl
(dppp)Pd \bigcirc I > \bigcirc OTf > \bigcirc Cl


Ackerman, L. K. G.; Lovell, M. M.; Weix, D. J. Nature, 2015, 524, 454.

Hu Group

15



		Br + MeO	NiB	Cl ₂ (5 mol%), dp r ₂ •3H ₂ O (5 mol% (X equiv), Zn (2		• OMe							
	1 equiv	1 0	DM	IF (2 mL), 40 ^o C,									
		PhBr	ArOTf	- -	100%								
Equiv KF	t (h)	Remaining	Remaining		90%	\vdash	-	-	-	-	-	-	
		(% yield)	(% yield)		80%	\vdash	_	-	_	-		_	_
0	11	30	38		70%	Ц	_	_				_	
	24	5	10										
0.2	11	35	36	%	60%	Η		-		-		_	_
	24	20	28	3 A%	50%	\square	_		_	_	_	_	_
0.5	11	13	15	S	5								
	24	0	1		40%							_	_
1	11	0	9		30%	$\left - \right $		_	_	_		_	
	24	0	0		200%								
2	11	1	0		20%	\square							
	24	0	0		10%	\vdash	-	_	_	_		_	_
3	11	0	0		0%								
	24	0	0	-	0,0	0.0) equiv	0.20 equiv	0.5 equiv	1.0	0 equiv	2.0 equiv	3.0 equiv
ig. 4 The effect of KF on the selectivity of the					Product		62	37	79	\vdash	77	79	72
nultimetal-catalysed cross-Ullmann reaction.					Bianisole		14	1	5		4	9	12
					Biphenyl		21	13	12		7	10	13
					Anisole		1	0	0		1	0	0
					Benzene		3	2	3		2	2	2
					Aryl triflate		0	28	1		9	0	0
					Bromobenzene		0	20	0		0	0	0

	E	3r		dCl ₂ (5 mol%), dppp (5 mol%) iBr ₂ •3H ₂ O (5 mol%), bpy (5mol%)						OMe						
		+	Ac	ditive (1 e	equiv)	Zn (2	2 ec	quiv)								
	1 equiv	MeO 1 ee	quiv DN	ИF (2 mL),	40°C	, 24 h			U.							
					100%											
		PhBr	ArOTf													
Additive	t (h)	Remaining	Remaining		90%						_		_			
		(% yield)	(% yield)		80%			_	_	_	_	_	_			
No Salt	3	42	47													
	24	5	10		70%							_	_			
KF	3	30	31	GC A%	60%			_	_	_			_			
	24	0	0	CO												
LiF	3	39	39		50%				_							
	24	0	3		40%			_								
CsF	3	3	37													
	24	0	11		30%											
KI	3	5	37		20%											
	24	0	0		2070											
KBr	3	0	23		10%				_							
	24	0	2		0%											
KOAc	3	2	26		070	No S		KF	LiF	CsF	KI	KBr	KOAc			
	24	0	0	Product		62	_	79	66	27	35	34	46			
				Bianisole		14		8	10	19	28	26	24			
ia 5 The e	Biphenyl		21	┛	9	15	9	37	36	29						
Fig. 5 The effect of additive on the selectivity of he multimetal-catalysed cross-Ullmann reaction.					Anisole			0	0	5	0	1	0			
				Benzene		3		3	4	30	1	1	1			
				Aryl triflat		0		0	3	11	0	2	0			
				Bromobe	nzene	0		0	0	0	0	0	0			

81

Multimetallic catalysed cross-coupling of aryl bromides with aryl triflates

Scheme 10. A general cross-Ullmann reaction catalysed by a combination of nickel and palladium.

Ackerman, L. K. G.; Lovell, M. M.; Weix, D. J. Nature, 2015, 524, 454.

Summary and Outlook

- (1) New methods to form C–C bonds using bimetallic systems (Pd/Cu, Pd/Au, Pd/Ni couples) have emerged, but it is also to develop other less well-behaved metal combinations.
- (2) It is important to understand the exchange of ancillary ligands, and the relative rates.
- (3) In the near future, new processes, particularly the catalytic versions of processes are hoped.

Thanks for your attention!

Hu Group